Chemically driven tunable light emission of charged and neutral excitons in monolayer WS₂.

نویسندگان

  • Namphung Peimyoo
  • Weihuang Yang
  • Jingzhi Shang
  • Xiaonan Shen
  • Yanlong Wang
  • Ting Yu
چکیده

Monolayer (1L) semiconducting transition metal dichacogenides (TMDs) possess remarkable physical and optical properties, promising for a wide range of applications from nanoelectronics to optoelectronics such as light-emitting and sensing devices. Here we report how the molecular adsorption can modulate the light emission and electrical properties of 1L WS2. The dependences of trion and exciton emission on chemical doping are investigated in 1L WS2 by microphotoluminescence (μPL) measurements, where different responses are observed and simulated theoretically. The total PL is strongly enhanced when electron-withdrawing molecules adsorb on 1L WS2, which is attributed to the increase of the exciton formation due to charge transfer. The electrical transport measurements of a 1L WS2 field effect transistor elucidate the effect of the adsorbates on the conductivity, which give evidence for charge transfer between molecules and 1L WS2. These findings open up many opportunities to manipulate the electrical and optical properties of two-dimensional TMDs, which are particularly important for developing optoelectronic devices for chemical and biochemical sensing applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Plasma functionalization for cyclic transition between neutral and charged excitons in monolayer MoS2

Monolayer MoS2 (1L-MoS2) has photoluminescence (PL) properties that can greatly vary via transition between neutral and charged exciton PLs depending on carrier density. Here, for the first time, we present a chemical doping method for reversible transition between neutral and charged excitons of 1L-MoS2 using chlorine-hydrogen-based plasma functionalization. The PL of 1L-MoS2 is drastically in...

متن کامل

Valley splitting and polarization by the Zeeman effect in monolayer MoSe2.

We have measured circularly polarized photoluminescence in monolayer MoSe2 under perpendicular magnetic fields up to 10 T. At low doping densities, the neutral and charged excitons shift linearly with field strength at a rate of ∓0.12  meV/T for emission arising, respectively, from the K and K' valleys. The opposite sign for emission from different valleys demonstrates lifting of the valley deg...

متن کامل

Optical identification of sulfur vacancies: Bound excitons at the edges of monolayer tungsten disulfide

Defects play a significant role in tailoring the optical properties of two-dimensional materials. Optical signatures of defect-bound excitons are important tools to probe defective regions and thus interrogate the optical quality of as-grown semiconducting monolayer materials. We have performed a systematic study of defect-bound excitons using photoluminescence (PL) spectroscopy combined with a...

متن کامل

Highly anisotropic and robust excitons in monolayer black phosphorus.

Semi-metallic graphene and semiconducting monolayer transition-metal dichalcogenides are the most intensively studied two-dimensional materials of recent years. Lately, black phosphorus has emerged as a promising new two-dimensional material due to its widely tunable and direct bandgap, high carrier mobility and remarkable in-plane anisotropic electrical, optical and phonon properties. However,...

متن کامل

Electrical control of neutral and charged excitons in a monolayer semiconductor.

Monolayer group-VI transition metal dichalcogenides have recently emerged as semiconducting alternatives to graphene in which the true two-dimensionality is expected to illuminate new semiconducting physics. Here we investigate excitons and trions (their singly charged counterparts), which have thus far been challenging to generate and control in the ultimate two-dimensional limit. Utilizing hi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • ACS nano

دوره 8 11  شماره 

صفحات  -

تاریخ انتشار 2014